

NEESgrid: System Overview

Carl Kesselman, USC/ISI Chief Architect, NEESgrid

Director
Center for Grid Technologies
USC/Information Sciences Institute

The Role of the NEESgrid System Architecture

- Define the core capabilities of NEESgrid
- Facilitate interoperability, extensibility and scalability
- Provide a foundation on which the diverse NEES usage scenarios can be supported
 - Not single point solution

Architecture Approach

- Common infrastructure that can used across all NEES applications
 - Balance generic mechanisms, extensibility for future growth, efficiency for application specific tasks
- Validate against user requirements
 - Input from user requirements analysis
 - MOST, EBD build on proven technology base

NEESgrid and the Grid

- Grid is infrastructure to support
 - Data sharing, numeric simulation, remote observation and control, collaboration
- Maps well into NEES requirements
 - Similarity of problem space and objectives
- Synergistic with many other projects
 - E.G. SCEC, ETF, ...
 - Minimizes risk

Open Grid Services Architecture

- Builds on Web Services technology
 - A Grid service is a Web service with extras
- Significant industry buy in
 - IBM, HP, Oracle, SGI, ...
- High-quality open source implementation
 - Globus Toolkit®

NEESGrid and NSF Middleware Initiative

- CISE program to harden, test and support national middleware infrastructure
- Significant NMI presence in Grid space
- Plan to eventually fold NEES specific services into NMI releases

Software Components

- Extant software
 - particularly significant elements of the NSF
 Middleware Initiative (NMI) software system
- Custom software to address general NEESgrid issues
 - Produced by SI team
- Site-specific, and application specific software
 - to be produced by the equipment sites, other NEES participants, or other sources.

Physical Elements

- A moderate number of equipment sites,
- A moderate number of resource sites,
 - data repositories and/or computer systems
- A potentially large number of users
 - including earthquake engineers, students, and others.
- Campus and wide area networks
- An operations center,
 - provides monitoring and diagnostic facilities for NEESgrid as a whole

NEESgrid Core Capabilities

- Tele-control and tele-observation of experiments
- Data cataloging and sharing
- Remote Collaboration and visualization tools and services
- Simulation execution and integration

NEESgrid High-level Structure

Centralized NEES-Wide Services

Non-Centralized NEESgrid Services

Architecture of NEESgrid Equipment site.

Globus Toolkit V3

- High quality open source OGSI implementation
 - Developed by The Globus Alliance
- Commercial support available
- Globus services include:
 - Security
 - Authentication and authorization
 - Status and configuration
 - Resource management
 - Data services
 - Data movement
 - Data access

NEESgrid Software Stack

Browsers/User Interfaces

Applications/CHEF

Programming Interfaces (Java, C APIs, Matlab toolboxes, OpenSEES...)

NTCP

GridFTP

Other Globus Services Computational Services

NSDS

Plugins

OGSI Core

RBNB

NEESgrid Core Data Transfer Components

- NEESgrid data transfer for both experiments and simulations is achieved through a forked data path.
 - Streaming Data (for live viewing during events)
 - Transfer to Repository (for guaranteed storage and retrospective access)
- The "Transfer to Repository" path is well-defined and in place; equipment sites are installing and customizing our implementation through our EBD process.
- The "Streaming Data" path is currently being redesigned following successful implementation and use in early experiment and EBD activities.

Transfer to Repository

- The NEESgrid Repository (running on the NEES-POP) mandates conventions for data collection from simulation components and physical DAQ implementations.
 - Shared filesystem (e.g., NFS, Samba)
 - File location and naming conventions
 - File format conventions
- The Repository's Data Ingestor detects new files and ingests them into the repository with appropriate metadata.

Tele-Control Services

- A single, transaction-based protocol and service (NTCP) to control physical experiments and computational simulations.
- OGSI based implementation (GT3.0)
- Plug-ins to interface the NTCP service
 - A computational simulation written in Matlab
 - Shore Western control hardware
 - MTS control hardware (via Matlab and xPC)
 - Labview
 - C
- Security architecture, including GSI authentication and a flexible, plug-in-based authorization model.

Plug-in approach

Programming Interfaces

NEESgrid System Summary

- Data, simulation, collaboration, visualization, teleoperation/control, delivered via
 - APIs and tools for users
 - Services and interfaces at equipment sites
 - Services and interfaces at resource sites
 - Management services for operation
- Demonstration via MOST and EBD
 - Used to evaluate and refine capability
- System software converging on versions for handoff to consortium

Hybrid Experiments

Soil-Structure Test

The MOST Substructures

Slide courtesy of Bill Spencer and Narutoshi Nakata, UIUC

MOST Components

The MOST Event

